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Abstract 
 
This paper describes the design and implementation of a linear controller with an Anti-Windup Compensator (AWC) for a hot air 

blower system having output delays, under actuator saturation constraint and noise. Traditional Anti-Windup (AW) schemes for time-
delay systems are based on either local stability or global stability with performance restrictions. We modify an existing AWC architec-
ture using a time-delay term in the compensator in order to ensure global stability and performance. It is also shown that the existing 
Linear Matrix Inequalities (LMIs) based optimization schemes for AWC, which are derived using the decoupled architecture and co-
prime factorization, can be applied to the modified AWC architecture. This modified delay independent AWC scheme is applied to a hot 
air blower system and practical results are discussed. This paper aims to support the industrial application of the modified AWC ensuring 
global stability and performance, by applying it to a hot air blower system under actuator situation and output delay as well as electrical 
and thermal noises. 
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1. Introduction 

Temperature is an important control variable like flow rate 
and motor speed in thermal machines. For industrial applica-
tions, temperature needs to be finely controlled with consid-
eration of equipment safety [1-4]. Saturation nonlinearity can 
lead to dangerous results when appropriate windup prevention 
is not provided. In the past, saturation has caused many acci-
dents like the meltdown of the Chernobyl nuclear power plant 
[5]. Electrical furnaces used in industries operate at very high 
temperatures. At such high temperatures, lag, overshoot and 
instability of the plant due to saturation may cause dangerous 
results. In addition to saturation, delays can make such windup 
prevention difficult [6-9].  

Anti-windup design and implementation has been studied 
extensively in the last decade. It is an additional controller (or 
collection of controllers) which are activated when the control 
signal or sensor output is under saturation and tries to recover 
the linear behavior of the closed-loop system. The main issues 
of anti-windup design and implementation are robustness, 
local and global stability, amplitude and rate saturation, per-

formance, computation reduction, architecture compactness 
and feasibility of solution [5]. Anti-windup techniques have 
also been implemented for experimental setups and practical 
applications (see [10-12]). 

AWC designs for time-delay systems under actuator satura-
tion are rare. Mostly, AWC design techniques [13, 14] 
achieved its local stability with consideration of enlarging the 
basin of attraction. Some techniques like [13] discussed global 
stability, but their performance was limited. Also, those tech-
niques considering global stability were found to have infeasi-
ble results. On the other hand, the technique in [15] provides 
the global stability and robust performance and can be applied 
to both stable and marginally stable plants; but, one drawback 
is that it uses an open loop plant as anti-windup filter, which 
limits the system performance due to the presence of slow 
poles in the plant [16]. Moreover, a practical implementation 
of AWC techniques for time-delay systems is required to pro-
vide a solution that fulfills industrial needs and demands.  

Decoupled architecture based AW techniques [16-19] using 
co-prime factors of the plant are very powerful in achieving 
global stability and performance. These techniques always 
give a feasible solution for linear stable plants without delays. 
In contrast to [15], these techniques have no limitation due to 
use of the open loop plant in the AWC architecture. But such 
techniques are not applicable to time-delay systems. In this 
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paper, we modify the architecture of [16] for systems with 
output delays to solve the problem of windup which ensure 
global stability and performance with feasibility. The modi-
fied architecture uses an existing linear matrix inequality [19] 
to find the anti-windup parameters. Hence, the modified AW 
design in our case is independent of the delay term present in 
the plant or AWC, unlike the traditional AWC designs. The 
proposed architecture has been successfully applied to a hot 
air blower system (PT326 [20] interfaced with a computer). 

In this paper, we consider a constrained control of a hot air 
blower system with time-delays. The plant model is identified 

using the uniform random number system identification tech-
nique. Signal conditioning is done by implementing a low 
pass filter. A PI controller is designed and implemented. It is 
found that the closed-loop system gives undesirable results 
due to windup caused by integral action. The proposed AWC 
is successfully applied to the hot air blower system. Imple-
mentation details and experimental results are also demon-
strated at the end of the paper.  
 

2. System description, identification and conditioning 

The PT 326 system consists of a heater and a fan to blow hot 
air through a tunnel. A thermister is attached to the tunnel to 
sense the temperature of the hot air. The thermisters can be 
inserted at three different locations in the tunnel having differ-
ent output delays. This system is interfaced with a computer 
through the 1208fs USB based module as shown in Fig. 1. To 
vary the operating power of the heater, 0~4 V input can be 
applied via the computer. The output of this system, in the 
form of voltage, is accessible to the computer. To convert the 
measured voltage signal V into temperature T, the following 
third order calibration equation is implemented: 

 
3 20.072 0.3033 2.2459 38.1792.T V V V= − + +

 
 (1) 

 
The plant model is identified using an identification tech-

nique of uniformly distributed numbers similar to that in [11, 
12]. For system identification, uniform random numbers (at 
every 30 sec) are applied at the plant input and output is re-
corded with a sampling time of 0.1 sec as shown in Fig. 2. 
This input-output plot can be used to obtain the magnitude 
plot for system identification in a similar way described in [11, 
12]. Fig. 3 shows two magnitude plots: The dotted line is the 
actual magnitude plot of the plant obtained using MATLAB® 
command (etfe) and the solid one is an approximated magni-
tude plot by a second order transfer function. The second or-
der transfer function is chosen in such a way that it can model 
the actual plant sufficiently close. A higher order model can 
be chosen, but it will be difficult to design a controller and an 
AWC with a higher order model (see [18]). The operation 
range of the plant is considered to 0.2 rad/sec. The identified 
plant is as follows: 

 
0.6

2
1.2( ) ( ), ( ) .

25 10 1
s

p pG s e G s G s
s s

−= =
+ +  

 (2) 

 
An output delay in the plant is identified by finding a lag 

present in the step response. Note that the plant model (2) is 
identified with normalized input-output data. Hence, a proper 
input-output normalization is required for the practical imple-
mentation of a controller. In order to cancel the effects from 
noise, the following low pass filter is used: 

 

2

4( ) .
4 4

H s
s s

=
+ +  

 (3) 

 
Fig. 1. Hot air blower system PT326 interfaced with a computer. 
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Fig. 2. Input-output data for system identification (experimental re-
sults). 
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Fig. 3. Magnitude plots for actual and identified plants. 
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From Fig. 3, it is evident that the noise is present at higher 
frequencies, so the use of the low pass filter (Eq. (3)) is justi-
fied for noise removal. This filter is discretized using zero 
order hold (ZOH) of a sampling time 0.1 sec. 
 

3. Linear controller design and implementation 

An optimal PI controller is designed for the plant in Eq. (2) 
using the response optimization tool of MATLAB®, provid-
ing a rise time of 15.6 sec, settling time of 21 sec and over-
shoot less than 1 percent for the closed-loop system. The PI 
controller is given as follows: 

 
0.0899( ) 0.6643 .K s

s
= +

 
 (4) 

 
The controller (Eq. (4)) is discretized using ZOH for a sam-

pling time of 0.1 sec and implemented for the hot air blower 
system. Because the controller is designed for a normalized 
input, the error signal is divided by 30 (as temperature ranges 
from 30 oC to 60 oC). The normalized output of the controller 
is passed through a soft saturation of [0 1] implemented in the 
computer and then multiplied by 4 to feed it into the plant [21]. 
Fig. 4 (a) and (b) show the output response and the normalized 
actuator signal using this PI controller. The output response 
tracks the reference with some lag when the actuator signal is 

saturated, which clearly indicates the windup. The lag is due 
to integral action of PI controller and causes windup effect 
(see details in [11, 12 and 18]). 
 

4. AWC architecture and design 

The proposed AWC architecture is shown in Fig. 5. Here 
( )M s  and ( )N s  are parts of the co-prime factors of the plant 

as in [16-19]. The additional term included in the architecture 
is the lag term se τ−  same as in the plant model. Because the 
plant output has a lag, it must be compensated with the same 
delay. The detailed functioning of the decoupled architecture 
for windup compensation using ( )M s  and ( )N s  can be 
explicitly found in [16, 19]. Our objective is to prove the sta-
bility and performance of the architecture of Fig. 5 by the 
addition of the delay term [22, 23] and to apply the architec-
ture for the new scenario. 

Remark 1: The addition of delay term se τ−  in AWC is simi-
lar to what was done in [15], but the architecture of Fig. 5 
gives better performance and less conservative results for 
stable plants because it uses the co-prime factorization of the 
plant for compensation rather than the plant model itself. The 
use of a plant model in AWC gives conservative results due to 
the slow poles in the plant. 

Remark 2: An AWC will always exist for the architecture of 
Fig. 5 because, at least for ( )M s I= , the architecture re-
duces to Internal Model Compensator (IMC) in similar fash-
ion as for the architecture in [16]. 

The proposed architecture is valid for the system whose 
open loop is asymptotically stable, and satisfies the well-
posedness and the asymptotic stability of the closed-loop sys-
tem without considering saturation, as seen in [19]. Fig. 6 
shows an equivalent decoupled architecture of Fig. 5. In order 
to obtain a linear performance, one has to minimize the 2L  
gain from linu  to ( )dy t τ− . But the delays present in the 
non-linear part of the decoupled architecture complicate the 
design and create problems in developing Linear Matrix Ine-
qualities (LMI), ensuring global stability and performance. So 
we further reshape the architecture of Fig. 6 to obtain the de-
coupled non-linear part independent of the delay term.  

Fig. 7 shows an equivalent reshaped decoupled architecture 
of Fig. 6, in which the decoupled nonlinear part is independent 
of the delay term. In Fig. 6, ( )liny t τ−  minus ( )dy t τ−  pro-
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(b) Actuator signal (normalized) 
 
Fig. 4. Closed-loop response with a PI controller: A windup effect is
shown due to actuator saturation (experimental results). 
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Fig. 5. Proposed AW architecture for the systems with input saturation 
and output delays. 
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duces ( )py t τ− , whereas in Fig. 7, ( )liny t  minus ( )dy t  
produces ( )py t  and then it is passed through the delay term 

se τ−  to yield ( )py t τ− . 
The only requirement for the stability of the architecture of 

Fig. 7 is to stabilize the system from linu  to dy  (because the 
linear part is already stable). Hence in order to achieve stabil-
ity and linear performance, one has to minimize 2L  gain γ , 
from linu  to dy  as clear from Fig. 7. The advantage of this 
modified decoupled architecture is that the optimization of 

( )M s I−  and ( )N s  becomes independent of the delay term. 
Hence, a globally stable AWC can be found for the proposed 
architecture by using the LMI based optimization for a full 
order AWC, derived in [19, 24] and given by 

 
minimize γ  
such that 

0
* 2 0
* * 0
* * *

T T T T
p p p

T
p

X B U L QC L D
U I UD

I
I

γ
γ

⎡ ⎤− +
⎢ ⎥−⎢ ⎥ <⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

,
 

 (5) 

 
where T T T

p p p pX QA A Q L B B L= + + + , with 0Q > , 0U >  

and diagonal, 0γ >  and L  as LMI variables. Further F  
can be found from 1F LQ−=  and used to determine 

( )M s I−  and ( )N s  with the following state space. 
 

( )
~ 0 .

( )

p p p

p p p

A B F B
M s I

F
N s

C D F D

⎡ ⎤+
−⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥+⎣ ⎦  

 (6) 

 
Here, ( , , , )p p p pA B C D  forms the state space of plant ( )

p

G s  
as 

 

( ) ~ .p p
p

p p

A B
G s C D

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦  

 (7) 

Using the LMI based optimization of (5), the following val-
ues of F  and γ  are obtained for the hot air blower system. 
 

4 4-1.6358 10 -0.5206 10 , 1.2.F γ⎡ ⎤= × × =⎣ ⎦
 

 (8) 
 

In Eq. (3), the filter H (s) has poles at (-2, -2), whereas the 
plant (Eq. (2)) has poles at (-0.2, -0.2). Also, the filter is to 
have unity gain. Since the dynamics of the filter is very fast 
(ten times fast) and it has unity gain, it can be excluded in the 
AWC design. In this case, the filter can remove high fre-
quency noises without affecting the plant output. Using the 
value of F  in (6), we obtained the following AWC parame-
ters for the present case: 
 

1 2
-16360 s - 5206( ) ( )   

s  + 16360 s + 5206
s M s Iθ = − = ,

 
 (9) 

0.6
2 2

0.048( ) ( )  .
s  + 16360 s + 5206

s ss e N s eτθ − −= =
 

 (10) 

 
For implementation, 1( )sθ  and 2( )sθ  are discretized using 

first order hold (FOH) with a sampling time of 0.1 sec. In 
order to reduce the memory use due to the delay term in 

2 ( )sθ , one can also use the Pade approximation. 
Remark 3: The proposed method uses the existing LMI 

based optimization of [19, 24] which is applicable for systems 
without delays. Hence our proposed architecture contains 
delays similar to [15] but, unlike that in [15], the optimization 
is independent from the delays. Therefore, the AWC design is 
simpler because the existing LMI based optimization ap-
proach is used. 
 

5. Controller and AWC implementation 

Fig. 8 shows the overall diagram of the closed-loop system 
[25-28] including the linear controller, calibration equation, 
filter and AWC parameters. The output of the plant is con-
verted into temperature using a calibration equation. The noise 
present in the temperature output is filtered using ( )H z . The 
difference between the reference and the measured tempera-
ture is normalized by using a gain 1k . This normalized error 

r
( )K s ( )pG s

( )py t τ−

( )M s I−

( )N s

du
u

linu

( )dy t τ−

( )liny t τ−

se τ−

se τ−

    
  

Disturbance Filter
with Delay

  Non Linear
Loop
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Fig. 6. Equivalent architecture of Fig. 5 with decoupled linear and non-
linear parts. 
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Fig. 7. Modified equivalent decoupled architecture with non-linear part 
independent of delay. 
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is passed through the controller ( )K z . Similarly a gain 2k  is 
used to convert the normalized actuator signal into the re-
quired plant input. Because anti-windup parameters 1θ  and 

2θ  are designed using normalized plant ( )G s , so their input 
is the difference of the normalized saturation block input and 
output. The output of 1θ  and 2θ  is used to compensate the 
controller input and output (which are also normalized signals). 
Normalized saturation of [0 1] is implemented in the computer, 
which also provides a saturated signal of [0 4] to the plant, by 
using the gain 

2

k .  
It is important to note that the output of 2( )zθ  is subtracted 

by the normalized error signal rather than added at the normal-
ized plant output as shown in Fig. 8. Either way results in the 

same effect on the overall closed-loop response but the former 
requires less computation. Fig. 9 (a) and (b) show the closed-
loop response and normalized actuator signal with the pro-
posed AWC. It can be seen that the closed-loop response has 
no lag due to saturation. It tracks the reference signal. Windup 
is prevented for the hot air blower system. The normalized 
actuator signal no longer remains under saturation, when ref-
erence changes from 60 oC to 40 oC at the time of 160s. To 
validate the proposed design, the simulations results for 
closed-loop response with AWC are also given in Appendix A. 
It can be seen that the simulation results are similar to experi-
mental results.  

Further, we used the first order Pade approximation of the 
delay term present in 2θ  and implemented it in the same way 
as shown in Fig. 8. The results of the closed-loop output and 
normalized actuator signal obtained with the Pade approxima-
tion are similar to Fig. 9 (a) and (b) and those shown in Ap-
pendix B. 
 

6. Conclusions 

In this paper, we addressed the constrained control of a hot 
air blower system under output delays, noise and actuator 
saturation. Different steps for control of the plant such as sys-
tem identification, canceling of noise, PI control and AWC 
design and implementation were described. The existing glob-
ally stable AWC technique for linear systems without time-
delays was modified for systems having an output lag by in-
cluding a delay term in the compensator. This addition solved 
the problem of AWC design and ensured global stability and 
performance for stable processes with output delays and ac-
tuator saturation. The proposed AWC structure was successful 
for the hot air blower system, so it can be used for industrial 
processes. To reduce the memory consumption due to the 
output delay term, Pade approximation can also be a useful 
solution. 
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Appendix  

A. Simulation results 

Fig. A.1(a) and (b) show the simulation results of the closed-
loop responses and the normalized actuator signals using the 
proposed AWC, respectively. The response without AWC and 
with actuator saturation has a lag, similar to the experimental 
results of Fig. 4. The response with AWC and with actuator 
saturation has no lag, similar to the experimental results of Fig. 
9. Hence, the simulation results are similar to the experimental 
results with same trends. Overall simulation behavior has 
some differences in terms of overshoot and rise time with 
experimental results because the actual plant is nonlinear.  

 
B. AWC with Pade approximation of delay 

The closed-loop response and the normalized actuator signal 
for the AWC with the first order Pade approximation of 2θ  
are shown in Fig. A.2(a) and (b), respectively. These re-
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sponses are similar to the results of AWC without Pade ap-
proximation, see Fig. 9(a) and (b). As the order of Pade ap-  

 
 

Muhammad Rehan received his M.Sc. 
Degree in Electronics from Quaid-e-
Azam University (QAU) in 2005 and 
M.S. Degree in Systems Engineering 
from Pakistan Institute of Engineering 
and Applied Sciences (PIEAS), Islama-
bad, Pakistan. He is currently a faculty 
member in the Department of Electrical 

Engineering, PIEAS and is also a Ph.D. candidate in the De-
partment of Cogno-Mechatronics Engineering (under the 
World Class University program, MEST, Korea), Pusan Na-
tional University, Busan, Republic of Korea. His research 
interests include robust, nonlinear and adaptive control, anti-
windup design and implementation, and chaotic systems con-
trol. 
 
 

proximation increases, the performance of the AWC will get 
close to Fig. 9. 
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Fig. A.1. Performance of the proposed AWC under actuator saturation (simulation results). 
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                                                   (a) Closed-loop response                                                   (b) Actuator signal (normalized) 
 
Fig. A.2. Closed-loop output response with the first order Pade approximation of 2θ (experimental results). 
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